Fluid Power Data

JUGGAPCO TRADINO & SERVICES CO. WILL

FORMULAS

Basic Fluid Power Formulas:									
Pressure	FORCE TRANSMITTED OVER AN AREA	P=	FORCE (Pounds) AREA (Square Inches)	$=\frac{F}{A} = psi$					
Flow	RATE EXPRESSED AS FLOW (GALLONS) VS. TIME (MIN)	Q=	VOLUME (Gallons) TIME (Minutes)	$= \frac{GAL}{MIN} = GPM$					
Horsepower	FLUID POWER IN HORSEPOWER	HP=	PRESSURE (PSI) X FLOW (GPM)	$= \frac{P \times Q}{1714}$					

Fluid Formulas:								
Velocity	FLUID SPEED EXPRESSED AS FLOW (GPM) VS. INTERNAL PIPE FLOW AREA (SQ-IN)	V= or V=	INTERNAL AREA (Sq In)	_ =	.3208 x Q A .4085 x Q ID ²			
Compressibility	APPROX. 1/2% PER 1000PSI- THEORETICAL. USE 3% PER 1000PSI AS A SAFE FIGURE ONCE AIR HAS BEEN BLED	V _A =	PRESSURE (PSI) X VOLUME 250,000 (approx.)	_ =	PSI x VOL 250,000			
Expansion	ADDITIONAL OIL GENERATED ABOVE ORIGINAL VOLUME DUE TO THERMAL EXPANSION	V _A =	TEMP. CHANGE (°F) X VOLUME 2000 (approx.)	_ =	ΔT x VOL 2000			
Specific Gravity	EXPRESSED AS A COEFFICIENT (GENERALLY .8690 FOR MOST AW32 THRU AW68 OILS)	S _G =	WEIGHT OF ONE CU-FT OF FLUID WEIGHT OF ONE CU-FT OF WATER	_ =	W 62.4283			
Flow Coeff. C _v	COEFFICIENT OF FLOW - EXPRESSED IN GALLONS PER MINUTE OF 60° F WATER AT ONE PSI PRESSURE DROP ACROSS THE VALVE OR OTHER FLOW DEVICE.	C _v =	FLOW RATE (GPM) X \SPEC. GRAVITY \[\sqrt{PRESSURE DROP (PSI)} \]	_ =	$\frac{\text{GPM X}\sqrt{S_G}}{\sqrt{\Delta P}}$			
Viscosity	FOR VISCOSITIES OF 32 TO 100 SAYBOLT UNIVERSAL SECONDS: FOR VISCOSITIES OF 100 TO 240 SAYBOLT UNIVERSAL SECONDS:		2102 V SUS 134.6 AW3	PPROXIMATE VISCOSITIES AT 100°F: AW32- 150 SUS AW46- 205 SUS				
	FOR VISCOSITIES ABOVE 240 SAYBOLT UNIVERSAL SECONDS:	CS=	AW68-310 SUS 4.635					

Cylinder Formulas:								
Area	OF A CIRCLE EXPRESSED AS SQUARE INCHES	$A = \pi \times RADIUS^2 \text{ (Inches)}$	$\pi \times r^2$					
		$\mathbf{A} = \frac{\pi}{4} \times \text{DIAMETER}^2 \text{ (Inches)} = \frac{\pi D^2}{4} =$.7854 x D ²					
Force	EXPRESSED IN POUNDS, IN FLUID GENERATED BY PRESSURE X AREA	F= PRESSURE (PSI) X AREA (Sq-In) =	PxA					
Speed	EXPRESSED IN INCHES/ SEC	3.85 X FLOW (GPM)	3.85 x Q					
- 1		CYL. EFFECTIVE AREA (Sq-In)	Α					
Flow Rate	FLOW EXPRESSED IN GPM. NOTE: DEDUCT ROD AREA FOR CYL. RETRACT.	Q= .26 X CYL. AREA (Sq-In) X SPEED (In-Sec) =	.26 X A X S					