Fluid Power Data

ACCUMULATOR SIZING TABLE

ACCUMULATOR DATA

						OPER/	ATING	G P	RESSUR	E- PSI							
		200	400	600	800	1000	120	0	1400	1600	1800	2000	2200	2400	2600	2800	3000
E- PSI	100			200.0 228.0	209.0	216	.0	221.0	225.0	228.0							
	300		47.8 65.9	101.0 130.0	131.0 <i>163.0</i>	150.0 183.0	164 197.		175.0 207.0	183.0 214.0	190.0 220.0	195.0 224.0	199.0 228.0	203.0	207.0	210.0	213.0
	500		31.7 74.0 43.4 97.9		101.0 131.0			136.0 169.0	147.0 181.0	156.0 190.0	164.0 198.0	172.0 204.0	177.0 209.0	182.0 213.0	186.0 217.0	190.0 220.0	
	700				23.9 33.0	58.5 78.5			102.0 131.0	117.0 148.0	129.0 161.0	138.0 <i>171.</i> 0	146.0 180.0	154.0 187.0	160.0 193.0	165.0 198.0	170.0 203.0
	900					19.1 26.3	48.2 65.4		70.5 94.1	88.3 115.0	102.0 132.0	114.0 <i>145.0</i>	124.0 <i>15</i> 6.0	132.0 <i>165.0</i>	140.0 <i>17</i> 3.0	146.0 179.0	153.0 185.0
CHARG	1100						15.7 23.5		41.2 56.4	61.7 82.4	77.6 103.0	91.2 119.0	103.0 132.0	112.0 <i>143.0</i>	120.0 <i>152.0</i>	128.0 161.0	135.0 167.0
GAS PRECHARGE. PSI	1300	PERF	1 GALLON SIZE (231 CUBIC INCH CAPACITY) PERFORMANCE TABLE (ADIABATIC AND ISOTHERMAL) 18.9 49.2									69.6 92.5	82.1 108.0	93.0 121.0	103.0 132.0	111.0 <i>142.0</i>	118.0 <i>150.0</i>
NITROGEN (1500	MAX (MAX. GAS CAPACITY - 266 CU. IN. MAX OIL CAPACITY - 231 CU IN. ADIABATIC - TOP VALUE ISOTHERMAL - LOWER VALUE								31.9 43.9	48.9 66.0	62.8 81.4	75.0 98.9	85.6 112.0	94.6 123.0	103.0 <i>132.0</i>
N N	1700		ISOTHERMAL vs ADIABATIC PRESSURE CHANGE OF THE GAS IS INVERSELY PROPORTIONAL TO ITS CHANGE IN VOLUME. WHEN 100 cu. in. OF GAS ORIGINALLY AT 1000 psig. IS.									28.7 39.6	44.2 60.1	57.5 77.1	68.6 92.2	79.0 104.0	87.7 114.0
	1900	COMP	COMPRESSED TO 50 cu. in. VOLUME, PRESSURE WILL BE 2000 psia IF GAS TEM- PERATURE IS KEPT CONSTANT. THIS IS ISOTHERMAL PERFORMANCE. COMPRESSION AND EXPANSION OF THE GAS CAUSE HEATING AND COOL-										26.3 36.2	40.4 55.0	52.7 71.3	63.3 84.9	73.9 96.8
2100 ING WHICH INCREASE AND DECREASE PRESSURE OF VOLUME CHANGE. IF GAS WERE PERFECTLY I ING UP ANY OF THIS EXTRA HEAT TO OR THRU							ECTLY INSULATED TO PREVENT GIV- R THRU THE METAL IN WHICH IT IS						8.5 12.0	23.9 33.0	37.2 50.8	48.9 66.0	59.1 79.0
	2300	2300 CONTAINED (OR PICKING UP HEAT WHEN COOLED), PERFORMANCE WOULD BE ADIABATIC. HERE 100 cu. in. OF GAS ORIGINALLY AT 1000 psia IS COMPRESSED TO 61.2 cu. in. TO BUILD UP TO 2000 psia. THEREFORE, LESS OIL CAN ENTER THE ACCUMU.ATOR.												8.0 11.2	22.1 30.6	34.1 47.1	45.2 61.7
	2500	RAPID TION V	ACTUAL PERFORMANCE WILL LIE BETWEEN ISOTHERMAL AND ADIABATIC. RAPID OPERATION WOULD APPROACH ADIABATIC FIGURES; SLOW OPERA- TION WOULD APPROACH ISOTHERMAL. THE ISOTHERMAL FIGURES ARE USU-												1.2 10.2	20.5 28.5	32.5 44.4
	2700	ALLY EMPLOYED; ALLOWANCE AS USUALLY MADE FOR RESERVE CAPACITY WILL BE ADEQUATE TO INCLUDE EFFECT OF TEMPERATURE CHANGES RESULT ING FROM COMPRESSION AND EXPANSION.														6.7 9.6	18.9 26.3

GAS LAWS FOR ACCUMULATOR SIZING

Where "P"= psia (absolute)= psig (gauge pressure) + 14.7 psi

	ORIGINAL PRESSURE x ORIGINAL VOLUME ^{n =} FINAL PRESSURE x FINAL VOLUME ⁿ	$P_1 V_1^n = P_2 V_2^n$		
PRESSURE OR VOLUME W/ TEMPERATURE CHANGE DUE TO HEAT OF COMPRESSION	$\frac{\text{FINAL TEMP.}}{\text{ORIG. TEMP.}} = \left(\frac{\text{ORIG. VOLUME}}{\text{FINAL VOLUME}} \right)^{n-1} = \left(\frac{\text{FINAL PRESSURE}}{\text{ORIG. PRESSURE}} \right)^{n-1/n}$	$ \begin{array}{c c} I_2 = \left(\frac{V_1}{V_2}\right)^{n-1} = \left(\frac{P_2}{P_1}\right)^{n-1/n} \end{array} $		

NITROGEN EXPONENTS:

"n"= 1.4 For full adiabatic conditions ex: "Full Heating" (constant full cycling)

"n"= 1.3 For rapid cycling (most heating normally experienced)

"n"= 1.1 For "Normal" cycling

"n"= 1.0 For when gas has time to cool to ambient before cycle (ISOTHERMIC)